Title of article :
A new method for evaluating the plastic properties of materials through instrumented frictional sliding tests Original Research Article
Author/Authors :
S.C. Bellemare، نويسنده , , M. Dao، نويسنده , , S. Suresh، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
8
From page :
6385
To page :
6392
Abstract :
Frictional normal contact probing methods involving instrumented, depth-sensing indentation can be used to estimate the mechanical properties of small-volume structures and materials such as thin films and components of micro-electro-mechanical systems. This paper describes a new method for estimating the plastic properties, i.e. the yield strength and strain hardening exponent, of ductile materials from the topography of scratches formed by a conical tip during an instrumented, depth-sensing frictional sliding test. The proposed reverse analysis (or inverse analysis) uses dimensionless functions derived from computational simulations to extract plastic properties from an instrumented scratch response performed on a standard, commercially available instrument. Sensitivity analysis indicates that an experimental error of 5% in the scratch hardness or the pile-up height induces an error of <22% in the estimated strain hardening exponent. Laboratory experiments illustrate how two aluminum alloy tempers of the same indentation hardness have significantly different pile-up as a result of different strain hardening. Comparative results between the frictional sliding test and traditional tensile tests showed reasonable agreement for a total of 11 metallic alloys evaluated. These results confirm the potential usefulness of the proposed method as an engineering tool to probe plastic properties of small-volume materials and confined structures where it is difficult to obtain reliable estimates of mechanical properties by other means.
Journal title :
ACTA Materialia
Serial Year :
2010
Journal title :
ACTA Materialia
Record number :
1145222
Link To Document :
بازگشت