Title of article :
Phase-field modelling of self-propagating high-temperature synthesis of NiAl Original Research Article
Author/Authors :
R. Nikbakht، نويسنده , , H. Assadi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
A phase-field model is developed and used to simulate high-temperature synthesis of intermetallic compounds. The model is based on a thermodynamic formulation, which incorporates the formation of chemically ordered phases and the associated heat generation. In contrast to previous approaches to modelling of high-temperature synthesis of intermetallics, the present model can be used to analyse the kinetics of the process at the microstructure level. The model takes general thermodynamic and kinetic parameters as input and gives as output a spatially resolved sequence of phase formation, from which the overall reaction kinetics can be inferred. Thus, no additional assumption has to be made on the nature of the kinetic mechanisms or on the magnitude of the overall reaction rate. Beside prediction of the microstructure, the model captures the key thermal characteristics of the combustion synthesis in both modes of thermal explosion and self-propagation. The results of simulations, as applied to the case of intermetallic formation in a simplified Ni–Al system, are shown to be consistent with the existing experimental data.
Keywords :
Phase-field modelling , Intermetallic compounds , Combustion synthesis , Self-propagating high-temperature synthesis , Nickel–aluminide
Journal title :
ACTA Materialia
Journal title :
ACTA Materialia