Title of article :
Discovery of metastable tetragonal disordered phase upon phase transitions in the equiatomic nanostructured FePd alloy Original Research Article
Author/Authors :
N.I. Vlasova، نويسنده , , A.G. Popov، نويسنده , , N.N. Shchegoleva، نويسنده , , V.S. Gaviko، نويسنده , , L.A. Stashkova، نويسنده , , G.S. Kandaurova، نويسنده , , D.V. Gunderov، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
2560
To page :
2570
Abstract :
Specific features of the phase transformation А1 → L10 (space groups image and P4/mmm, respectively) in single crystals of the equiatomic alloy FePd subjected to annealings both in the absence and in the presence of external uniaxial load, as well as in polycrystalline samples that had undergone severe plastic deformation via high-pressure torsion and subsequent annealing, have been studied. An investigation of the single crystals in a nanostructured state formed at different stages of ordering annealing was performed using optical polarization, thermomagnetic and transmission electron microscopy (TEM) methods. The nanostructured state of the polycrystalline samples FePd after deformation of both disordered and ordered FePd alloys and subsequent annealing was examined with the help of TEM and X-ray techniques. The results obtained were analyzed based on the known concepts of the symmetry theory of phase transitions. It was concluded that the atomic ordering in the FePd alloys is preceded by the formation of a ferroelastic disordered body-centered tetragonal phase with the structural type А6 and the space group I4/mmm. Experimental data that evidence the existence of a tetragonal disordered phase both in the single crystals and in the polycrystalline samples of FePd after severe plastic deformation and subsequent annealing are reported. Thus, the A1 ↔ A6 ↔ L10 phase transformation represents a combination of different types of phase transitions such as cooperative displacement A1 ↔ А6 and ordering A6 ↔ L10 of atoms.
Keywords :
L10 alloy FePd , Disorder-to-order , Order-to-disorder phase transformations , Martensitic transitions , TEM microscopy , X-ray diffraction
Journal title :
ACTA Materialia
Serial Year :
2013
Journal title :
ACTA Materialia
Record number :
1146909
Link To Document :
بازگشت