Title of article :
Extremum problems for eigenvalues of discrete Laplace operators Original Research Article
Author/Authors :
Ren Guo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
451
To page :
461
Abstract :
The P1 discretization of the Laplace operator on a triangulated polyhedral surface is related to geometric properties of the surface. This paper studies extremum problems for eigenvalues of the P1 discretization of the Laplace operator. Among all triangles, an equilateral triangle has the maximal first positive eigenvalue. Among all cyclic quadrilaterals, a square has the maximal first positive eigenvalue. Among all cyclic n-gons, a regular one has the minimal value of the sum of all positive eigenvalues and the minimal value of the product of all positive eigenvalues.
Keywords :
Discrete Laplace operator , Spectra , Extremum , Cyclic polygon
Journal title :
Computer Aided Geometric Design
Serial Year :
2013
Journal title :
Computer Aided Geometric Design
Record number :
1147800
Link To Document :
بازگشت