Title of article :
Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts Original Research Article
Author/Authors :
Jin Hong Kim، نويسنده , , Dong Jin Suh، نويسنده , , Tae-Jin Park، نويسنده , , Kyung Lim Kim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
CO2 reforming of CH4 was carried out over Ni–alumina aerogel catalysts prepared with various Ni loadings. The preparation of alumina supported Ni catalysts via sol–gel synthesis and subsequent supercritical drying led to the formation of very small metal particles, which are evenly distributed over the alumina support. The activity of the aerogel catalysts increased along with increasing metal loading, and eventually, the SAA25 (0.25 in Ni/Al mole ratio) catalyst exhibited the high activity comparable to that of a 5 wt.% Ru/alumina catalyst (ESCAT44, Engelhard). Compared to the alumina-supported Ni catalyst prepared by conventional impregnation method, Ni–alumina aerogel catalysts showed a remarkably low coking rate due to highly dispersed metal particles. From TEM micrograph studies, it was observed that the formation of filamentous carbon was significantly influenced by the metal particle size and proceeded mostly over the metal particles larger than 7 nm. The loss of catalytic activity at 973 K was mainly caused by coke deposition and sintering.
Keywords :
nickel , Alumina , Deactivation , Metal particle size , Filamentous carbon , Methane , Aerogel , Reforming , Carbon dioxide , Sol–gel
Journal title :
Applied Catalysis A:General
Journal title :
Applied Catalysis A:General