Title of article :
Catalytic transformation of methyl benzenes over zeolite catalysts Original Research Article
Author/Authors :
S. Al-Khattaf، نويسنده , , M.N. Akhtar، نويسنده , , T. Odedairo، نويسنده , , A. Aitani، نويسنده , , N.M. Tukur، نويسنده , , M. Kub?، نويسنده , , Z. Musilov?-Pavla?kov?، نويسنده , , J. ?ejka، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300–400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated.
Keywords :
4-Trimethylbenzene , Disproportionation , 2 , Isomerization , TNU-9 , Mordenite , Toluene , 1 , ZSM-5 , m-Xylene , SSZ-33
Journal title :
Applied Catalysis A:General
Journal title :
Applied Catalysis A:General