Title of article :
RNA enzymes with two small-molecule substrates Original Research Article
Author/Authors :
Faqing Huang، نويسنده , , Zhili Yang، نويسنده , , Michael Yarus، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 1998
Pages :
10
From page :
669
To page :
678
Abstract :
Background: The ‘RNA world’ hypothesis posits ancient organisms employing versatile catalysis by RNAs. In particular, such a metabolism would have required RNA catalysts that join small molecules. Such anabolic reactions now occur very widely, for example in phospholipid, terpene, amino acid and nucleotide synthetic pathways in modern organisms. Present RNA systems, however, do not perform such reactions using substrates that do not base pair. Here we ask whether this lack is a methodological artifact due to the practice of selection-amplification, or a fundamental property of active sites reconstructed within RNA structures. Results: Three rationally modified RNA enzymes, Iso6-G, Iso6-2G and Iso6-3G, catalyze the formation of (5′→5′) polyphosphate-linked oligonucleotides in trans. One of these, Iso6-G RNA, has a specific substrate site for a guanosine triphosphate, GTP, dGTP or ddGTP, and one nonspecific substrate site for a terminal-phosphate-containing small molecule. This ribozyme catalyzes multiple turnovers, proceeding at a constant rate. Guanosine specificity is probably not attributable to Watson-Crick base pairing. Conclusions: Ribozymes can readily bind multiple small-molecule substrates simultaneously and catalyze reactions that build up larger products, apparently independent of substrate-RNA Watson-Crick base pairing. RNA enzymes therefore parallel proteins, which often overcome the entropic difficulties of positioning multiple small substrates for catalysis of anabolic reactions. These results support the idea of a complex ancestral metabolism based on RNA catalysis.
Journal title :
Chemistry and Biology
Serial Year :
1998
Journal title :
Chemistry and Biology
Record number :
1158073
Link To Document :
بازگشت