Author/Authors :
Michael Groll، نويسنده , , Marion G?tz، نويسنده , , Markus Kaiser، نويسنده , , Elisabeth Weyher، نويسنده , , Luis Moroder، نويسنده ,
Abstract :
TMC-95ʹs natural cyclic tripeptide metabolites represent potent competitive proteasome inhibitors. The constrained conformation of TMC-95 proteasomal inhibitors provides the driving force for entropically high-affinity binding. Based on the crystal structure of the proteasome:TMC-95A complex, the synthetically challenging TMC-95 core structure was used for the design and synthesis of less demanding biphenyl-ether macrocycles, in which the biphenyl-ether moiety functions as an endocyclic clamp restricting its tripeptide backbone. These simplified analogs allowed us to identify high plasticity of the proteasomal tryptic-like specificity pocket. Biphenyl-ether compounds extended with an amide group were hydrolyzed by the proteasome, although the crystal structure of such proteasome:biphenyl-ether complexes revealed quenching of proteolysis at the acyl-enzyme intermediate. Our data reveal that biphenyl-ether derivatives bind noncovalently to the proteasomal tryptic-like active site in a reversible substrate-like manner without allosteric changes of active site residues.