Author/Authors :
Sean Ekins، نويسنده , , Robert C. Reynolds، نويسنده , , Hiyun Kim، نويسنده , , Mi-Sun Koo، نويسنده , , Marilyn Ekonomidis، نويسنده , , Meliza Talaue، نويسنده , , Steve D. Paget، نويسنده , , Lisa K. Woolhiser، نويسنده , , Anne J. Lenaerts، نويسنده , , Barry A. Bunin، نويسنده , , Nancy Connell، نويسنده , , Joel S. Freundlich، نويسنده ,
Abstract :
Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical HTS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.