Title of article :
Singularity analysis of a class of parallel robots based on Grassmann–Cayley algebra
Author/Authors :
Patricia Ben-Horin، نويسنده , , Daniel Glozman and Moshe Shoham، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
13
From page :
958
To page :
970
Abstract :
In this paper we present a different approach for analyzing singularities of parallel robots. This approach is based on inspecting the actuators’ line dependencies by use of a matrix called the superbracket, which is similar to the Jacobian matrix and contains Plücker coordinates in its columns. Certain manipulations on this matrix, under rules based on Grassmann–Cayley algebra, enable us to obtain an algebraic statement which is then translated back into conditions between geometric entities. This method allows us to analyze the singularity in a coordinate-free manner resulting from this matrix. We demonstrate the application of this method on a class of Gough–Stewart platforms. For this class we obtained that the singular configurations occur precisely when four planes, defined by the positions of the joints, are concurrent in a point.
Keywords :
Parallel robot , Exterior algebra , Grassmann–Cayley algebra , Singularity
Journal title :
Mechanism and Machine Theory
Serial Year :
2006
Journal title :
Mechanism and Machine Theory
Record number :
1163803
Link To Document :
بازگشت