Title of article :
Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors
Author/Authors :
Carlos Mart??n، نويسنده , , Leif J. Jonsson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
10
From page :
386
To page :
395
Abstract :
Low-molecular weight aliphatic acids, furaldehydes and a broad range of different aromatic compounds are known to inhibit the fermentation of lignocellulose hydrolysates by yeasts. In this work, a cocktail of different lignocellulose-derived inhibitors was used to compare the inhibitor resistance of eleven different industrial and laboratory Saccharomyces cerevisiae strains and two Zygosaccharomyces strains. The inhibitor cocktail was composed of two aliphatic acids, formic and acetic acid, two furaldehydes, furfural and 5-hydroxymethylfurfural (HMF), and two aromatic compounds, cinnamic acid and coniferyl aldehyde. Fermentations were performed under oxygen-limited conditions and with different levels (100, 75, 50, 25 and 0%) of the inhibitor cocktail present. The ethanol yield on initial glucose, the volumetric and specific ethanol productivity, the biomass yield and the glucose consumption rates were used as criteria for the performance of the strains. The results revealed major differences in inhibitor resistance between yeast strains within the same species. The ethanol yield of the S. cerevisiae strain that was least affected decreased only with 10% at an inhibitor cocktail concentration of 100%, while the decrease in ethanol yield for the most sensitive S. cerevisiae strain was more than 50% already at an inhibitor cocktail concentration of 25%. Ethanol formation was generally less affected than growth and ethanol yield less than ethanol productivity. The two most resistant strains were an S. cerevisiae strain isolated from a spent sulphite liquor plant and one of the laboratory S. cerevisiae strains. Additional fermentations with either HMF or coniferyl aldehyde revealed that the degree of resistance of different yeast strains was highly dependent on the inhibitor used. A mutant strain of S. cerevisiae displaying enhanced resistance against coniferyl aldehyde compared with the parental strains was identified.
Keywords :
Lignocellulose , Saccharomyces cerevisiae , Zygosaccharomyces , Fermentation inhibitors , Ethanol
Journal title :
Enzyme and Microbial Technology
Serial Year :
2003
Journal title :
Enzyme and Microbial Technology
Record number :
1173941
Link To Document :
بازگشت