Title of article :
Numerical study on perforation behavior of 6061-T6 aluminum matrix composite
Author/Authors :
Woei-Shyan Lee، نويسنده , , Chang-Horng Lai، نويسنده , , Su-Tang Chiou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
Explicit finite element code (LS-DYNA3D program) simulation is used to investigate the penetration and perforation behavior of a 6061-T6 aluminum plate and a C12K33 carbon fiber reinforced 6061-T6 aluminum metal-matrix composite plate when impacted by a tungsten projectile. The plate is impacted by the projectile at the angle of incidence of 0° (i.e. in the normal direction), and three impact velocities are used, 500, 1000 and 1500 m/s. The composite plate has a laminate stacking sequence of (0/90°)2 and is tested at fiber volume fractions of 5, 10 and 15%. The carbon fiber laminate is modeled as Hughes–Liu shell elements, whereas the projectile, the aluminum plate and the aluminum matrix of the composite are modeled as 8-node hexahedron elements. The material model for the tungsten projectile, the aluminum plate and the aluminum matrix of the composite is elastic–plastic–hydrodynamic, while the model for the carbon fiber laminate is the Chang–Chang composite failure model. Plate perforation is found to occur under all of the studied impact conditions. The deformation behavior of the plate and projectile as well as the projectile post-perforation velocity and the deceleration of the projectile depends strongly on the plate properties and impact velocity.
Keywords :
Aluminum-matrix composite , Perforation behavior , Impact response , Dynamic fracture mechanism , Carbon fiber laminate
Journal title :
Journal of Materials Processing Technology
Journal title :
Journal of Materials Processing Technology