Title of article :
Fuzzy clustering algorithms for mixed feature variables
Author/Authors :
Yang، Miin-Shen نويسنده , , Hwang، Pei-Yuan نويسنده , , Chen، De-Hua نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
This paper presents fuzzy clustering algorithms for mixed features of symbolic and fuzzy data. El-Sonbaty and Ismail proposed fuzzy c-means (FCM) clustering for symbolic data and Hathaway et al. proposed FCM for fuzzy data. In this paper we give a modified dissimilarity measure for symbolic and fuzzy data and then give FCM clustering algorithms for these mixed data types. Numerical examples and comparisons are also given. Numerical examples illustrate that the modified dissimilarity gives better results. Finally, the proposed clustering algorithm is applied to real data with mixed feature variables of symbolic and fuzzy data.
Keywords :
Fuzzy clustering , Fuzzy C-means , Symbolic data , Fuzzy data , Mixed feature variables , Dissimilarity measure
Journal title :
FUZZY SETS AND SYSTEMS
Journal title :
FUZZY SETS AND SYSTEMS