Title of article :
Counting the number of fuzzy subgroups of an abelian group of order p^nq^m
Author/Authors :
Murali، V. نويسنده , , Makambab، B. B. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
-458
From page :
459
To page :
0
Abstract :
In this paper, we determine the number of fuzzy subgroups of G=Z p^n + Z q^m where p,q are distinct primes, and n,m are any two natural numbers. First, we represent the number of maximal chains of G as a summation through m involving certain binomial coefficients. Using this concise expression, we propose a combinatorial formula for the number of fuzzy subgroups of G and verify it for specific values of m and n. Finally, we sketch a proof for the general case.
Keywords :
Equivalence , Finite abelian , Fuzzy subgroups , Maximal chain
Journal title :
FUZZY SETS AND SYSTEMS
Serial Year :
2004
Journal title :
FUZZY SETS AND SYSTEMS
Record number :
118160
Link To Document :
بازگشت