Title of article :
A model of fuzzy linguistic IRS based on multi-granular linguistic information Original Research Article
Author/Authors :
E. Herrera-Viedma، نويسنده , , O. Cordon، نويسنده , , M. Luque، نويسنده , , A.G. Lopez، نويسنده , , A.M. Munoz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
An important question in IRSs is how to facilitate the IRS-user interaction, even more when the complexity of the fuzzy query language makes difficult to formulate user queries. The use of linguistic variables to represent the input and output information in the retrieval process of IRSs significantly improves the IRS-user interaction. In the activity of an IRS, there are aspects of different nature to be assessed, e.g., the relevance of documents, the importance of query terms, etc. Therefore, these aspects should be assessed with different uncertainty degrees, i.e., using several label sets with different granularity of uncertainty.
Keywords :
Multi-granular linguistic information , Information retrieval , Linguistic modelling
Journal title :
International Journal of Approximate Reasoning
Journal title :
International Journal of Approximate Reasoning