Title of article :
Soft computing optimization methods applied to logistic processes Original Research Article
Author/Authors :
C.A. Silva، نويسنده , , J.M.C. Sousa، نويسنده , , T. Runkler and K. Weinzierl، نويسنده , , R. Palm، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
This paper discusses the methodologies that can be used to optimize a logistic process of a supply chain described as a scheduling problem. First, a model of the system based on a real-world example is presented. Then, a new objective function called Global Expected Lateness is proposed, in order to describe multiple optimization criteria. Finally, three different optimization methodologies are proposed: a classical dispatching rule, and two soft computing techniques, Genetic Algorithms (GA) and Ant Colony Optimization (ACO). These methodologies are compared to the dispatching policy in the real-world example. The results show that dispatching heuristics are outperformed by the GA and ACO meta-heuristics. Further, it is shown that GA and ACO provide statistically identical scheduling solutions and from the optimization performance point of view, it is equivalent to use any of the meta-heuristics.
Keywords :
Ant colony optimization , Logistic processes , Genetic algorithms , Scheduling
Journal title :
International Journal of Approximate Reasoning
Journal title :
International Journal of Approximate Reasoning