Title of article :
Semantic hashing Original Research Article
Author/Authors :
Ruslan Salakhutdinov، نويسنده , , Geoffrey Hinton، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
969
To page :
978
Abstract :
We show how to learn a deep graphical model of the word-count vectors obtained from a large set of documents. The values of the latent variables in the deepest layer are easy to infer and give a much better representation of each document than Latent Semantic Analysis. When the deepest layer is forced to use a small number of binary variables (e.g. 32), the graphical model performs “semantic hashing”: Documents are mapped to memory addresses in such a way that semantically similar documents are located at nearby addresses. Documents similar to a query document can then be found by simply accessing all the addresses that differ by only a few bits from the address of the query document. This way of extending the efficiency of hash-coding to approximate matching is much faster than locality sensitive hashing, which is the fastest current method. By using semantic hashing to filter the documents given to TF-IDF, we achieve higher accuracy than applying TF-IDF to the entire document set.
Keywords :
Information retrieval , Graphical models , Unsupervised learning
Journal title :
International Journal of Approximate Reasoning
Serial Year :
2009
Journal title :
International Journal of Approximate Reasoning
Record number :
1182727
Link To Document :
بازگشت