Title of article :
Using mathematical programming to solve Factored Markov Decision Processes with Imprecise Probabilities Original Research Article
Author/Authors :
Karina Valdivia Delgado، نويسنده , , Leliane Nunes de Barros، نويسنده , , Fabio Gagliardi Cozman، نويسنده , , Scott Sanner، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
This paper investigates Factored Markov Decision Processes with Imprecise Probabilities (MDPIPs); that is, Factored Markov Decision Processes (MDPs) where transition probabilities are imprecisely specified. We derive efficient approximate solutions for Factored MDPIPs based on mathematical programming. To do this, we extend previous linear programming approaches for linear approximations in Factored MDPs, resulting in a multilinear formulation for robust “maximin” linear approximations in Factored MDPIPs. By exploiting the factored structure in MDPIPs we are able to demonstrate orders of magnitude reduction in solution time over standard exact non-factored approaches, in exchange for relatively low approximation errors, on a difficult class of benchmark problems with millions of states.
Keywords :
Probabilistic planning , Multilinear programming , Imprecise Markov Decision Processes (MDPIPs)
Journal title :
International Journal of Approximate Reasoning
Journal title :
International Journal of Approximate Reasoning