Title of article :
Parametric regression analysis of imprecise and uncertain data in the fuzzy belief function framework Original Research Article
Author/Authors :
Zhi-gang Su، نويسنده , , Yi-fan Wang، نويسنده , , Peihong Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
26
From page :
1217
To page :
1242
Abstract :
In this paper, parametric regression analyses including both linear and nonlinear regressions are investigated in the case of imprecise and uncertain data, represented by a fuzzy belief function. The parameters in both the linear and nonlinear regression models are estimated using the fuzzy evidential EM algorithm, a straightforward fuzzy version of the evidential EM algorithm. The nonlinear regression model is derived by introducing a kernel function into the proposed linear regression model. An unreliable sensor experiment is designed to evaluate the performance of the proposed linear and nonlinear parametric regression methods, called parametric evidential regression (PEVREG) models. The experimental results demonstrate the high prediction accuracy of the PEVREG models in regressions with crisp inputs and a fuzzy belief function as output.
Keywords :
Fuzzy belief function , Evidence theory , uncertain data , Regression analysis , Fuzzy data , EM algorithm
Journal title :
International Journal of Approximate Reasoning
Serial Year :
2013
Journal title :
International Journal of Approximate Reasoning
Record number :
1183362
Link To Document :
بازگشت