Title of article :
Eigenstrain modelling of residual stresses generated by laser shock peening
Author/Authors :
Mithila Achintha، نويسنده , , DAVID NOWELL، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
1091
To page :
1101
Abstract :
This paper presents an eigenstrain (misfit strain) model of the residual stresses generated by laser shock peening (LSP). The shock wave is first modelled as a dynamic pressure load in an explicit finite element (FE) model and the stabilised plastic strain distribution is extracted. This strain distribution is then incorporated as an eigenstrain distribution in a static FE model and the residual stresses generated by the original shock wave are obtained as the elastic response to the eigenstrain. In order to focus on the basic mechanics, an elastic-perfectly plastic material model is assumed. Similarly, a simplified pressure/time variation (a triangular ramp with the peak pressure occurring at the half the total pulse duration) is assumed in order to characterise the pressure pulse. The peak pressure and the duration of the pressure pulse are determined in a way that they are consistent with experimental results. The analysis is extended to study the case of multiple pulses and the results show that the process generates compression in a surface layer of about 1.5–2 mm deep. Furthermore, the results demonstrate that the magnitudes of subsurface tensile stresses are of the order of one fifth of the materialʹs yield strength for typical peening conditions.
Keywords :
Laser shock peening , Eigenstrain , Residual stress
Journal title :
Journal of Materials Processing Technology
Serial Year :
2011
Journal title :
Journal of Materials Processing Technology
Record number :
1184160
Link To Document :
بازگشت