Title of article :
Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism
Author/Authors :
Eunyoung Jeon، نويسنده , , Sunhee Lee، نويسنده , , Jong-In Won، نويسنده , , Sung Ok Han، نويسنده , , Jihyeon Kim، نويسنده , , Jinwon Lee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
44
To page :
51
Abstract :
The goal of this research was to develop recombinant Escherichia coli to improve fatty acid synthesis (FAS). Genes encoding acetyl-CoA carboxylase (accA, accB, accC), malonyl-CoA-[acyl-carrier-protein] transacylase (fabD), and acyl-acyl carrier protein thioesterase (EC 3.1.2.14 gene), which are all enzymes that catalyze key steps in the synthesis of fatty acids, were cloned and over-expressed in E. coli MG1655. The acetyl-CoA carboxylase (ACC) enzyme catalyzes the addition of CO2 to acetyl-CoA to generate malonyl-CoA. The enzyme encoded by the fabD gene converts malonyl-CoA to malonyl-[acp], and the EC 3.1.2.14 gene converts fatty acyl-ACP chains to long chain fatty acids. All the genes except for the EC 3.1.2.14 gene were homologous to E. coli genes and were used to improve the enzymatic activities to over-express components of the FAS pathway through metabolic engineering. All recombinant E. coli MG1655 strains containing various gene combinations were developed using the pTrc99A expression vector. To observe changes in metabolism, the in vitro metabolites and fatty acids produced by the recombinants were analyzed. The fatty acids (C16) from recombinant strains were produced 1.23–2.41 times higher than that from the wild type.
Keywords :
fatty acid biosynthesis , E. coli MG1655 , Long chain fatty acid , Acetyl-CoA , Malonyl-CoA , Fatty acyl-ACP chain
Journal title :
Enzyme and Microbial Technology
Serial Year :
2011
Journal title :
Enzyme and Microbial Technology
Record number :
1185729
Link To Document :
بازگشت