Title of article :
Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase
Author/Authors :
Yuki Yamashita، نويسنده , , Stefano Ferri، نويسنده , , Mai Linh Huynh، نويسنده , , Hitomi Shimizu، نويسنده , , Hideaki Yamaoka، نويسنده , , Koji Sode، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
123
To page :
128
Abstract :
The FAD-dependent glucose dehydrogenase (FADGDH) from Burkholderia cepacia has several attractive features for glucose sensing. However, expanding the application of this enzyme requires improvement of its substrate specificity, especially decreasing its high activity toward maltose. A three-dimensional structural model of the FADGDH catalytic subunit was generated by homology modeling. By comparing the predicted active site with that of glucose oxidase, the two amino acid residues serine 326 and serine 365 were targeted for site-directed mutagenesis. The single mutations that produced the highest glucose specificity were combined, leading to the creation of the S326Q/S365Y double mutant, which was virtually nonreactive to maltose while retaining high glucose dehydrogenase activity. The engineered FADGDH was used to develop a direct electron transfer-type, disposable glucose sensor strip by immobilizing the enzyme complex onto a carbon screen-printed electrode. While the electrode employing wild-type FADGDH provided dangerously flawed results in the presence of maltose, the sensor employing our engineered FADGDH showed a clear glucose concentration-dependent response that was not affected by the presence of maltose.
Keywords :
Diabetes , Glucose sensor , Glucose dehydrogenase , substrate specificity , Direct electron transfer , SMBG
Journal title :
Enzyme and Microbial Technology
Serial Year :
2013
Journal title :
Enzyme and Microbial Technology
Record number :
1185981
Link To Document :
بازگشت