Title of article :
Boundary blow-up solutions to elliptic systems of competitive type
Author/Authors :
Rossi، Julio D. نويسنده , , Garcia-Melian، Jorge نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
-155
From page :
156
To page :
0
Abstract :
We consider the elliptic system (delta)u=u^pv^q, (delta)v=u^rv^s in (omega), where p,s>1, q,r>0, and (omega) (subset)RN is a smooth bounded domain, subject to different types of Dirichlet boundary conditions: (F) u=(lambda), v=(mu), (I) u=v=+(infinity) and (SF) u=+(infinity), v=(mu) on (delta)(omega), where (lambda),(mu)>0. Under several hypotheses on the parameters p,q,r,s, we show existence and nonexistence of positive solutions, uniqueness and nonuniqueness. We further provide the exact asymptotic behaviour of the solutions and their normal derivatives near (delta)(omega). Some more general related problems are also studied.
Keywords :
nearly integrable hamiltonian systems , smooth invariant tori , lower dimensional tori , kam theory , small divisors , fast convergent methods , smoothing techniques , kolmogorovs theorem
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2004
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
119253
Link To Document :
بازگشت