Title of article :
Quantum integrals of motion for variable quadratic Hamiltonians Original Research Article
Author/Authors :
Ricardo Cordero-Soto، نويسنده , , Erwin Suazo، نويسنده , , Sergei K. Suslov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
29
From page :
1884
To page :
1912
Abstract :
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schrödinger equation with variable quadratic Hamiltonians. An extension of the Lewis–Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.
Keywords :
The time-dependent Schr?dinger equation , Green function , Propagator , Quantum damped oscillators , Caldirola–Kanai Hamiltonians , Quantum integrals of motion , Lewis–Riesenfeld dynamical invariant , Cauchy initial value problem , Ermakovיs equation , Ehrenfestיs theorem
Journal title :
Annals of Physics
Serial Year :
2010
Journal title :
Annals of Physics
Record number :
1206364
Link To Document :
بازگشت