Title of article :
N-fold Darboux transformation and double-Wronskian-typed solitonic structures for a variable-coefficient modified Kortweg-de Vries equation Original Research Article
Author/Authors :
Lei Wang، نويسنده , , Yi-Tian Gao، نويسنده , , Feng-Hua Qi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
15
From page :
1974
To page :
1988
Abstract :
Under investigation in this paper is a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model describing certain situations from the fluid mechanics, ocean dynamics and plasma physics. image-fold Darboux transformation (DT) of a variable-coefficient Ablowitz–Kaup–Newell–Segur spectral problem is constructed via a gauge transformation. Multi-solitonic solutions in terms of the double Wronskian for the vc-mKdV model are derived by the reduction of the image-fold DT. Three types of the solitonic interactions are discussed through figures: (1) Overtaking collision; (2) Head-on collision; (3) Parallel solitons. Nonlinear, dispersive and dissipative terms have the effects on the velocities of the solitonic waves while the amplitudes of the waves depend on the perturbation term.
Keywords :
Variable-coefficient modified Kortweg-de Vries model , Multi-solitonic solutions , N-fold Darboux transformation , Double Wronskian solution
Journal title :
Annals of Physics
Serial Year :
2012
Journal title :
Annals of Physics
Record number :
1206630
Link To Document :
بازگشت