Title of article :
Robust Monte Carlo localization for mobile robots Original Research Article
Author/Authors :
Sebastian Thrun، نويسنده , , Dieter Fox، نويسنده , , Wolfram Burgard، نويسنده , , Frank Dellaert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
43
From page :
99
To page :
141
Abstract :
Mobile robot localization is the problem of determining a robotʹs pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robotʹs belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called Mixture-MCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach.
Keywords :
Mobile robots , localization , Position estimation , Particle filters , Kernel density trees
Journal title :
Artificial Intelligence
Serial Year :
2001
Journal title :
Artificial Intelligence
Record number :
1206985
Link To Document :
بازگشت