Title of article :
Converting numerical classification into text classification Original Research Article
Author/Authors :
Sofus A. Macskassy، نويسنده , , Haym Hirsh، نويسنده , , Arunava Banerjee، نويسنده , , Aynur A. Dayanik، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
27
From page :
51
To page :
77
Abstract :
Consider a supervised learning problem in which examples contain both numerical- and text-valued features. To use traditional feature-vector-based learning methods, one could treat the presence or absence of a word as a Boolean feature and use these binary-valued features together with the numerical features. However, the use of a text-classification system on this is a bit more problematic—in the most straight-forward approach each number would be considered a distinct token and treated as a word. This paper presents an alternative approach for the use of text classification methods for supervised learning problems with numerical-valued features in which the numerical features are converted into bag-of-words features, thereby making them directly usable by text classification methods. We show that even on purely numerical-valued data the results of text classification on the derived text-like representation outperforms the more naive numbers-as-tokens representation and, more importantly, is competitive with mature numerical classification methods such as C4.5, Ripper, and SVM. We further show that on mixed-mode data adding numerical features using our approach can improve performance over not adding those features.
Keywords :
Machine learning , Text classification , Information retrieval
Journal title :
Artificial Intelligence
Serial Year :
2003
Journal title :
Artificial Intelligence
Record number :
1207217
Link To Document :
بازگشت