Title of article :
AND/OR search spaces for graphical models Original Research Article
Author/Authors :
Rina Dechter، نويسنده , , Robert Mateescu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
34
From page :
73
To page :
106
Abstract :
The paper introduces an AND/OR search space perspective for graphical models that include probabilistic networks (directed or undirected) and constraint networks. In contrast to the traditional (OR) search space view, the AND/OR search tree displays some of the independencies present in the graphical model explicitly and may sometimes reduce the search space exponentially. Indeed, most algorithmic advances in search-based constraint processing and probabilistic inference can be viewed as searching an AND/OR search tree or graph. Familiar parameters such as the depth of a spanning tree, treewidth and pathwidth are shown to play a key role in characterizing the effect of AND/OR search graphs vs. the traditional OR search graphs. We compare memory intensive AND/OR graph search with inference methods, and place various existing algorithms within the AND/OR search space.
Keywords :
AND/OR search , Search , Decomposition , Graphical models , Constraint networks , Bayesian networks
Journal title :
Artificial Intelligence
Serial Year :
2007
Journal title :
Artificial Intelligence
Record number :
1207518
Link To Document :
بازگشت