Title of article :
Model-based multidimensional clustering of categorical data Original Research Article
Author/Authors :
Tao Chen، نويسنده , , Nevin L. Zhang، نويسنده , , Tengfei Liu، نويسنده , , Kin Man Poon، نويسنده , , Yi Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
24
From page :
2246
To page :
2269
Abstract :
Existing models for cluster analysis typically consist of a number of attributes that describe the objects to be partitioned and one single latent variable that represents the clusters to be identified. When one analyzes data using such a model, one is looking for one way to cluster data that is jointly defined by all the attributes. In other words, one performs unidimensional clustering. This is not always appropriate. For complex data with many attributes, it is more reasonable to consider multidimensional clustering, i.e., to partition data along multiple dimensions. In this paper, we present a method for performing multidimensional clustering on categorical data and show its superiority over unidimensional clustering.
Keywords :
Categorical data , Multidimensional clustering , Latent tree models , Model-based clustering
Journal title :
Artificial Intelligence
Serial Year :
2012
Journal title :
Artificial Intelligence
Record number :
1207888
Link To Document :
بازگشت