Title of article :
Nonlinear inelastic uniform torsion of composite bars by BEM
Author/Authors :
E.J. Sapountzakis، نويسنده , , V.J. Tsipiras، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
151
To page :
166
Abstract :
In this paper the elastic–plastic uniform torsion analysis of composite cylindrical bars of arbitrary cross-section consisting of materials in contact, each of which can surround a finite number of inclusions, taking into account the effect of geometric nonlinearity is presented employing the boundary element method. The stress–strain relationships for the materials are assumed to be elastic–plastic–strain hardening. The incremental torque–rotation relationship is computed based on the finite displacement (finite rotation) theory, that is the transverse displacement components are expressed so as to be valid for large rotations and the longitudinal normal strain includes the second-order geometric nonlinear term often described as the “Wagner strain”. The proposed formulation does not stand on the assumption of a thin-walled structure and therefore the cross-section’s torsional rigidity is evaluated exactly without using the so-called Saint Venant’s torsional constant. The torsional rigidity of the cross-section is evaluated directly employing the primary warping function of the cross-section depending on both its shape and the progress of the plastic region. A boundary value problem with respect to the aforementioned function is formulated and solved employing a BEM approach. The influence of the second Piola–Kirchhoff normal stress component to the plastic/elastic moment ratio in uniform inelastic torsion is demonstrated.
Keywords :
Uniform torsion , Warping , Composite bar , inelastic , boundary element method , Wagner strain
Journal title :
Computers and Structures
Serial Year :
2009
Journal title :
Computers and Structures
Record number :
1210423
Link To Document :
بازگشت