Title of article :
31P and 1H NMR studies of the transesterification polymerization of polyphosphonate oligomers
Author/Authors :
R. Dustan Myrex، نويسنده , , Brandon Farmer، نويسنده , , Gary M. Gray، نويسنده , , Young-Jin Wright، نويسنده , , Jennifer Dees، نويسنده , , Prakash C. Bharara، نويسنده , , Houston Byrd، نويسنده , , Keith E. Branham ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
11
From page :
1105
To page :
1115
Abstract :
Polymeric phosphonate esters are an interesting class of organophosphorus polymers because both the polymer backbone and phosphorus substituents can be modified. These polymers have been prepared by ring-opening polymerizations of cyclic phosphites, stoichiometric polycondensations of dimethyl phosphonate with diols in conjunction with diazomethane treatment and by transesterification of polyphosphonate oligomers. Our initial attempts to prepare high molecular weight polymeric phosphonate esters by the transesterification methods were unsuccessful. Results indicate that the reactions of dimethyl phosphonate with diols to form polyphosphonate oligomers with only methyl phosphonate end groups are plagued by a serious side reaction that forms phosphonic acid end groups. These end groups do not participate in the transesterification reaction and limit the molecular weights of the polymers that can be obtained. The phosphonic acid end groups can be converted into reactive methyl phosphonate end groups by treatment with diazomethane, however diazomethane is explosive and the polymerization is slow. An alternative route for the production of high molecular weight polymers is the transesterification of the 1,12-bis(methyl phosphonato)dodecane, formed by the reaction of excess dimethyl phosphonate and 1,12-dodecanediol, with a Na2CO3 promoter. This allows polymers with molecular weights of up to 4.5×104 to be prepared, and no phosphonic acid end groups are observed in these polymers. Thermal analyses of the poly(1,12-dodecamethylene phosphonate) have shown that this polymer has reasonable thermal stability (onset of thermal decomposition at 273 °C). This polymer also undergoes a cold crystallization process at 15 °C similar to that which has been observed in some polyesters, polyamides and elastomers.
Keywords :
NMR , transesterification , Diazomethane , Polymeric phosphonate esters , Molecular weight
Journal title :
European Polymer Journal(EPJ)
Serial Year :
2003
Journal title :
European Polymer Journal(EPJ)
Record number :
1212048
Link To Document :
بازگشت