Title of article :
Non-equilibrium self-assembled structures in thick PS-b-PMMA copolymer films
Author/Authors :
J. Holoubek، نويسنده , , F. Lednick?، نويسنده , , J. Baldrian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Phenomena associated with the order–disorder transition (ODT) of block copolymers have been studied by optical light microscopy, SAXS, SEM, TEM and DSC. Observations have been made on almost symmetric polystyrene-block-poly(methyl methacrylate) samples of three molecular weights and their mixture. We observed non-equilibrium supermolecular structures several microns in diameter in the bulk of thick PS-b-PMMA films (ca. 100 μm thickness) prepared by vacuum drying of films cast from a non-selective solvent (after a short-term annealing above the Tg). Apparent LDOT (lower disorder-to-order transition) behaviour is observed for samples with non-equilibrium morphology surviving from solution as deduced from SAXS 1/Im vs 1/T and the full width at half-maximum vs 1/T plots.
The measurements point to complex behaviour near the ODT, but homogenization of samples upon long-term annealing well above the Tg temperature call into existence common stacks of lamellae observable in SEM images of microphase-separated samples. This verifies the opinion that the observed apparent LDOT behaviour of samples II, III and II + III is associated with the frozen non-equilibrium morphology surviving from solution. This is confirmed by SAXS measurement on a homogenized sample displaying the expected UDOT behaviour. It has been demonstrated that self-assembled structures prepared by vacuum drying of films cast from a non-selective solvent are non-equilibrium structures and their successive ordering is difficult due to a relative narrow temperature interval between Tg and degradation temperature. The conditions under which BCP films are prepared thus have a pronounced effect on the microstructure and microphase ordering process.
Keywords :
Block copolymer films , ODT , SELF-ASSEMBLY , PS-b-PMMA
Journal title :
European Polymer Journal(EPJ)
Journal title :
European Polymer Journal(EPJ)