Title of article :
Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface
Author/Authors :
Shang-Ming Zhou، نويسنده , , John Q. Gan، نويسنده , , Francisco Sepulveda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
1629
To page :
1640
Abstract :
In order to characterize the non-Gaussian information contained within the EEG signals, a new feature extraction method based on bispectrum is proposed and applied to the classification of right and left motor imagery for developing EEG-based brain–computer interface systems. The experimental results on the Graz BCI data set have shown that based on the proposed features, a LDA classifier, SVM classifier and NN classifier outperform the winner of the BCI 2003 competition on the same data set in terms of either the mutual information, the competition criterion, or misclassification rate.
Keywords :
feature extraction , higher-order statistics , bispectrum , Brain–computer interfaces , Electroencephalogram (EEG) , Classification
Journal title :
Information Sciences
Serial Year :
2008
Journal title :
Information Sciences
Record number :
1213267
Link To Document :
بازگشت