Title of article :
Feature selection via Boolean independent component analysis
Author/Authors :
Bruno Apolloni، نويسنده , , Simone Bassis، نويسنده , , Andrea Brega، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
17
From page :
3815
To page :
3831
Abstract :
We devise a feature selection method in terms of a follow-out utility of a special classification procedure. In turn, we root the latter on binary features which we extract from the input patterns with a wrapper method. The whole contrivance results in a procedure that is progressive in two respects. As for features, first we compute a very essential representation of them in terms of Boolean independent components in order to reduce their entropy. Then we reverse the representation mapping to discover the subset of the original features supporting a successful classification. As for the classification, we split it into two less hard tasks. With the former we look for a clustering of input patterns that satisfies loose consistency constraints and benefits from the conciseness of binary representation. With the latter we attribute labels to the clusters through the combined use of basically linear separators. We implement out the method through a relatively quick numerical procedure by assembling a set of connectionist and symbolic routines. These we toss on the benchmark of feature selection of DNA microarray data in cancer diagnosis and other ancillary datasets.
Keywords :
feature selection , feature extraction , Boolean independent component analysis , Clustering , Classification , DNA microarray , SVM ensemble
Journal title :
Information Sciences
Serial Year :
2009
Journal title :
Information Sciences
Record number :
1213777
Link To Document :
بازگشت