Title of article :
A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling
Author/Authors :
Min Gan ?، نويسنده , , Hui Peng، نويسنده , , Xiaoyan Peng، نويسنده , , Xiaohong Chen، نويسنده , , Garba Inoussa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
14
From page :
4370
To page :
4383
Abstract :
This paper presents a modeling approach to nonlinear time series that uses a set of locally linear radial basis function networks (LLRBFNs) to approximate the functional coefficients of the state-dependent autoregressive (SD-AR) model. The resulting model, called the locally linear radial basis function network-based autoregressive (LLRBF-AR) model, combines the advantages of the LLRBFN in function approximation and of the SD-AR model in nonlinear dynamics description. The LLRBFN weights that connect the hidden units with the output are linear functions of the input variables; this differs from the conventional RBF network weight structure. A structured nonlinear parameter optimization method (SNPOM) is applied to estimate the LLRBF-AR model parameters. Case studies on various time series and chaotic systems show that the LLRBF-AR modeling approach exhibits much better prediction accuracy compared to some other existing methods.
Keywords :
Time series prediction , Nonlinear parameter optimization , Locally linear radial basis function network , State-dependent autoregressive model
Journal title :
Information Sciences
Serial Year :
2010
Journal title :
Information Sciences
Record number :
1214120
Link To Document :
بازگشت