Title of article :
18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis
Author/Authors :
I.A. Ill?n، نويسنده , , J.M. Gorriz، نويسنده , , J. Ram?rez، نويسنده , , D. Salas-Gonzalez، نويسنده , , M.M. L?pez، نويسنده , , F. Segovia، نويسنده , , R. Chaves، نويسنده , , M. G?mez-Rio، نويسنده , , C.G. Puntonet، نويسنده , , the Alzheimer’s Disease Neuroimaging Initiative، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
14
From page :
903
To page :
916
Abstract :
Finding sensitive and appropriate technologies for non-invasive observation and early detection of Alzheimer’s disease (AD) is of fundamental importance to develop early treatments. In this work we develop a fully automatic computer aided diagnosis (CAD) system for high-dimensional pattern classification of baseline 18F-FDG PET scans from Alzheimer’s disease neuroimaging initiative (ADNI) participants. Image projection as feature space dimension reduction technique is combined with an eigenimage based decomposition for feature extraction, and support vector machine (SVM) is used to manage the classification task. A two folded objective is achieved by reaching relevant classification performance complemented with an image analysis support for final decision making. A 88.24% accuracy in identifying mild AD, with 88.64% specificity, and 87.70% sensitivity is obtained. This method also allows the identification of characteristic AD patterns in mild cognitive impairment (MCI) subjects.
Keywords :
Support vector machine (SVM) , Supervised learning , FDG-PET , Alzheimer’s disease (AD) , Computer Aided Diagnosis , Independent component analysis (ICA) , Principal component analysis (PCA)
Journal title :
Information Sciences
Serial Year :
2011
Journal title :
Information Sciences
Record number :
1214241
Link To Document :
بازگشت