Title of article :
Evidence supporting measure of similarity for reducing the complexity in information fusion
Author/Authors :
Xinde Li، نويسنده , , Jean Dezert، نويسنده , , Florentin Smarandache، نويسنده , , Xinhan Huang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
This paper presents a new method for reducing the number of sources of evidence to combine in order to reduce the complexity of the fusion processing. Such a complexity reduction is often required in many applications where the real-time constraint and limited computing resources are of prime importance. The basic idea consists in selecting, among all sources available, only a subset of sources of evidence to combine. The selection is based on an evidence supporting measure of similarity (ESMS) criterion which is an efficient generic tool for outlier sources identification and rejection. The ESMS between two sources of evidence can be defined using several measures of distance following different lattice structures. In this paper, we propose such four measures of distance for ESMS and we present in details the principle of Generalized Fusion Machine (GFM). Then we apply it experimentally to the real-time perception of the environment with a mobile robot using sonar sensors. A comparative analysis of results is done and presented in the last part of this paper.
Keywords :
lattice , information fusion , Complexity reduction , DSmT , Measure of similarity , Belief function , distance , Robot perception
Journal title :
Information Sciences
Journal title :
Information Sciences