Title of article :
A Boltzmann based estimation of distribution algorithm
Author/Authors :
S. Ivvan Valdez، نويسنده , , Arturo Hern?ndez، نويسنده , , Salvador Botello، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
12
From page :
126
To page :
137
Abstract :
This paper introduces a new approach for estimation of distribution algorithms called the Boltzmann Univariate Marginal Distribution Algorithm (BUMDA). It uses a Normal-Gaussian model to approximate the Boltzmann distribution, hence, formulae for computing the mean and variance parameters of the Gaussian model are derived from the analytical minimization of the Kullback–Leibler divergence. The resulting formulae explicitly introduces information about the fitness landscape for the Gaussian parameters computation, in consequence, the Gaussian distribution obtains a better bias to sample intensively the most promising regions than simply using the maximum likelihood estimator of the selected set. In addition, the BUMDA formulae needs only one user parameter. Accordingly to the experimental results, the BUMDA excels in its niche of application. We provide theoretical, graphical and statistical analysis to show the BUMDA performance contrasted with state of the art EDAs.
Keywords :
EDA , Boltzmann distribution , Kullback–Leibler , Normal distribution , Selection Method
Journal title :
Information Sciences
Serial Year :
2013
Journal title :
Information Sciences
Record number :
1215621
Link To Document :
بازگشت