Title of article :
Observables on quantum structures
Author/Authors :
Anatolij Dvure?enskij، نويسنده , , M?ria Kukov?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
215
To page :
222
Abstract :
An observable on a quantum structure is any σ-homomorphism of quantum structures from the Borel σ-algebra into the quantum structure. We show that our partial information on an observable known only for all intervals of the form (−∞, t) is sufficient to derive the whole information about the observable defined on quantum structures like σ-MV-algebras, σ-lattice effect algebras, Boolean σ-algebras, monotone σ-complete effect algebras with the Riesz Decomposition Property, the effect algebra of effect operators of a Hilbert space, and systems of functions – effect-tribes.
Keywords :
Monotone ?-completeness , Loomis–Sikorski Theorem , Effect-tribe , Riesz Decomposition Property , Observable , Effect algebra
Journal title :
Information Sciences
Serial Year :
2014
Journal title :
Information Sciences
Record number :
1216048
Link To Document :
بازگشت