Title of article :
The effect of polycations on early cement paste
Author/Authors :
I. Pochard، نويسنده , , C. Labbez، نويسنده , , A. Nonat، نويسنده , , H. Vija، نويسنده , , B. J?nsson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
1488
To page :
1494
Abstract :
This paper studies the possibility for improving the ductility of cement based materials by means of oligocationic additives. Actually, the setting of cement is due to ionic correlation forces between highly negatively charged C–S–H nanoparticles throughout a calcium rich solution. The main drawback of this strong attraction is its very short range that results in low elastic deformation of hydrated cementitious materials. A way to enlarge the attraction range between C–S–H particles would be to add cationic oligomers that would compete with calcium ions modifying the ionic correlation forces via a bridging mechanism of longer range, which could lead to a more ductile material. The studied parameters were the polymerization degree, the separation distance between the charged monomers and the balance between oligocations and monovalent and divalent cations in the solution. The results, both experimental and numerical by Monte Carlo (MC) simulations, demonstrate that cationic oligomers can compete with calcium cations as counterions to the C–S–H surface. The cohesive forces between C–S–H surfaces, calculated by MC simulations, show an interesting behaviour where range and magnitude can be tuned with oligomer concentration, polymerization degree and line charge density. Thus, it seems possible to modulate the ductility and critical strain of cement by addition of cationic oligomers.
Keywords :
Polymers (D.) , Bridging force , Cement paste (D.) , Tensile properties (C.)
Journal title :
CEMENT AND CONCRETE RESEARCH
Serial Year :
2010
Journal title :
CEMENT AND CONCRETE RESEARCH
Record number :
1216860
Link To Document :
بازگشت