Title of article :
Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid
Author/Authors :
M.A. Mansour، نويسنده , , M.A.Y. Bakier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
108
To page :
115
Abstract :
A numerical investigation is performed into the natural convection heat transfer characteristics within an enclosed cavity filled with nanofluid. The left and right walls of the cavity have a complex-wavy geometry and are maintained at a low and high temperature, respectively. Meanwhile, the upper and lower walls of the cavity are both flat and insulated. The nanofluid is composed of Al2O3 nanoparticles suspended in pure water. In performing the analysis, the governing equations are formulated using the Smoothed Particle Hydrodynamics and the complex-wavy-surface is modeled as the superimposition of two sinusoidal functions. The simulations examine the effects of the volume fraction of nanoparticles, the Rayleigh number and the complex-wavy-surface geometry parameters on the flow streamlines, isotherm distribution and Nusselt number within the cavity. The results show that for all values of the Rayleigh number, the Nusselt number, increases as the volume fraction of nanoparticles increases. In addition, it is shown that the heat transfer performance can be optimized by tuning the wavy-surface geometry parameters in accordance with the Rayleigh number. Overall, the results presented in this study provide a useful insight into potential strategies for enhancing the convection heat transfer performance within enclosed cavities with complex-wavy-wall surfaces.
Keywords :
SPH method , Free convection , Rayleigh number , Nusselt number , Wavy-wall cavity
Journal title :
International Communications in Heat and Mass Transfer
Serial Year :
2013
Journal title :
International Communications in Heat and Mass Transfer
Record number :
1221354
Link To Document :
بازگشت