Title of article :
Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink
Author/Authors :
M.R. Sohel، نويسنده , , R. Saidur، نويسنده , , N.H. Hassan، نويسنده , , M.M. Elias، نويسنده , , S.S. Khaleduzzaman، نويسنده , , I.M. Mahbubul، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
7
From page :
85
To page :
91
Abstract :
In this paper, different types of entropy generations in the circular shaped microchannel and minichannel are discussed analytically using different types of nanoparticles and base fluids. In this analysis, Copper (Cu), alumina (Al2O3) as the nanoparticle and H2O, ethylene glycol (EG) as the base fluids were used. The volume fractions of the nanoparticles were varied from 2% to 6%. In this paper, the irreversibility or entropy generation analysis as the function of entropy generation ratio, thermal entropy generation rate and fluid friction entropy generation rate for these types of nanofluids in turbulent flow condition have been analyzed using available correlations. Cu–H2O nanofluid showed the highest decreasing entropy generation rate ratio (36%) compared to these nanofluids flow through the microchannel at 6 vol.%. The higher thermal conductivity of H2O causes to generate much lower thermal entropy generation rate compared to the EG base fluid. The fluid friction entropy generation rate decreases fruitfully by the increasing of volume fraction of the nanoparticles. Cu–H2O and Cu–EG nanofluid gave the maximum decreasing rates of the fluid friction entropy generation rate are 38% and 35% respectively at 6% volume fraction of the nanoparticles. Smaller diameter showed less entropy generation in case of all nanofluids.
Keywords :
heat transfer , Minichannel , nanofluid , Microchannel , Entropy generation
Journal title :
International Communications in Heat and Mass Transfer
Serial Year :
2013
Journal title :
International Communications in Heat and Mass Transfer
Record number :
1221391
Link To Document :
بازگشت