Title of article :
A periodic hybrid DFT approach (including dispersion) to MgCl2-supported Ziegler–Natta catalysts – 1: TiCl4 adsorption on MgCl2 crystal surfaces
Author/Authors :
Maddalena D’Amore، نويسنده , , Raffaele Credendino، نويسنده , , Peter H.M. Budzelaar، نويسنده , , Mauro Causà، نويسنده , , Vincenzo Busico، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
103
To page :
110
Abstract :
The adsorption of TiCl4 on the surfaces of MgCl2 crystals has been investigated by means of state-of-the-art periodic hybrid DFT methods, as the first step of a comprehensive study aiming to elucidate the structure of the active species in industrial MgCl2-supported Ziegler–Natta catalysts for ethene and propene polymerization. A first distinctive feature of the approach was the thorough evaluation of dispersion forces, crucial because the binding of TiCl4 on MgCl2 surfaces turned out to be essentially dispersion-driven. Also important was a careful investigation of the effects of different choices on basis set and density functional (DF) on the quantitative aspects of the results; this allowed us to trace the unusually large disagreement in the previous literature and identify unambiguous trends. In particular, three full sets of calculations were run adopting the B3LYP(-D), PBE0(-D) and M06 approximations; to the best of our knowledge, the last represents the first case of M06 functional implementation in a periodic code (CRYSTAL) of widespread use. The results consistently indicated that the adsorption of TiCl4 on well-formed MgCl2 crystals under conditions relevant for catalysis can only occur on MgCl2(1 1 0) or equivalent lateral faces, whereas the interaction with MgCl2(1 0 4) – for decades claimed as the most important surface in stereoselective catalysts – is too weak for the formation of stable adducts. The implications of these findings for catalysis are discussed.
Keywords :
Haber–Weiss cycle , DFT , Peroxide decomposition , Catalysis , metal-organic framework
Journal title :
Journal of Catalysis
Serial Year :
2012
Journal title :
Journal of Catalysis
Record number :
1223305
Link To Document :
بازگشت