Title of article :
A probabilistic relational approach for web document clustering
Author/Authors :
E. Fersini، نويسنده , , E. Messina، نويسنده , , F. Archetti، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Pages :
14
From page :
117
To page :
130
Abstract :
The exponential growth of information available on the World Wide Web, and retrievable by search engines, has implied the necessity to develop efficient and effective methods for organizing relevant contents. In this field document clustering plays an important role and remains an interesting and challenging problem in the field of web computing. In this paper we present a document clustering method, which takes into account both contents information and hyperlink structure of web page collection, where a document is viewed as a set of semantic units. We exploit this representation to determine the strength of a relation between two linked pages and to define a relational clustering algorithm based on a probabilistic graph representation. The experimental results show that the proposed approach, called RED-clustering, outperforms two of the most well known clustering algorithm as k-Means and Expectation Maximization.
Keywords :
Relational document clustering , Relational web structure estimation
Journal title :
Information Processing and Management
Serial Year :
2010
Journal title :
Information Processing and Management
Record number :
1229013
Link To Document :
بازگشت