Title of article :
A collaborative filtering similarity measure based on singularities
Author/Authors :
Jes?s Bobadilla، نويسنده , , Fernando Ortega، نويسنده , , Antonio Hernando، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2012
Pages :
14
From page :
204
To page :
217
Abstract :
Recommender systems play an important role in reducing the negative impact of information overload on those websites where users have the possibility of voting for their preferences on items. The most normal technique for dealing with the recommendation mechanism is to use collaborative filtering, in which it is essential to discover the most similar users to whom you desire to make recommendations. The hypothesis of this paper is that the results obtained by applying traditional similarities measures can be improved by taking contextual information, drawn from the entire body of users, and using it to calculate the singularity which exists, for each item, in the votes cast by each pair of users that you wish to compare. As such, the greater the measure of singularity result between the votes cast by two given users, the greater the impact this will have on the similarity. The results, tested on the Movielens, Netflix and FilmAffinity databases, corroborate the excellent behaviour of the singularity measure proposed.
Keywords :
Recommender Systems , collaborative filtering , neighborhoods , Similarity measures , Singularity
Journal title :
Information Processing and Management
Serial Year :
2012
Journal title :
Information Processing and Management
Record number :
1229207
Link To Document :
بازگشت