Title of article :
A model catalyst approach to the effects of the support on Co–Mo hydrodesulfurization catalysts
Author/Authors :
Yasuaki Okamoto، نويسنده , , Takeshi Kubota، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
13
From page :
31
To page :
43
Abstract :
Co–Mo model sulfide catalysts, in which CoMoS phases are selectively formed, were prepared by means of a CVD technique using Co(CO)3NO as a precursor of Co. It is shown by means of XPS, FTIR and NO adsorption that CoMoS phases form selectively when the Mo content exceeds monolayer loading. A single exposure of MoS2/Al2O3 to a vapor of Co(CO)3NO at room temperature fills the edge sites of the MoS2 particles. It is suggested that the maximum potential HDS activity of MoS2/Al2O3 and Co–Mo/Al2O3 catalysts can be predicted by means of Co(CO)3NO as a “probe” molecule. An attempt was made to determine the fate of Co(CO)3NO adsorbed on MoS2/Al2O3. The effects of the support on Co–Mo sulfide catalysts in HDS and HYD were investigated by use of CVD-Co/MoS2/support catalysts. XPS and NO adsorption showed that model catalysts can also be prepared for SiO2-, TiO2- and ZrO2-supported catalysts by means of the CVD technique. The thiophene HDS activity of CVD-Co/MoS2/Al2O3, CVD-Co/MoS2/TiO2 and CVD-Co/MoS2/Al2O3 is proportional to the amount of Co species interacting with the edge sites of MoS2 particles or CoMoS phases. It is concluded that the support does not influence the HDS reactivity of CoMoS phases supported on TiO2, ZrO2 and Al2O3. In contrast, CoMoS phases on SiO2 show catalytic features characteristic of CoMoS Type II. With the hydrogenation of butadiene, on the other hand, the Co species on MoS2/TiO2, ZrO2 and SiO2 have the same activity, while the Co species on MoS2/Al2O3 have a higher activity.
Keywords :
Effect of support , Hydrodesulfurization , Co–Mo catalyst , model catalyst , MoS2 catalyst , Hydrogenation
Journal title :
CATALYSIS TODAY
Serial Year :
2003
Journal title :
CATALYSIS TODAY
Record number :
1231881
Link To Document :
بازگشت