Title of article :
A Single Destabilizing Mutation (F9S) Promotes Concerted Unfolding of an Entire Globular Domain in γS-Crystallin
Author/Authors :
Soojin Lee، نويسنده , , Bryon Mahler، نويسنده , , Jodie Toward، نويسنده , , Blake Jones، نويسنده , , Keith Wyatt، نويسنده , , Lijin Dong، نويسنده , , Elena V. Orlova and Graeme Wistow، نويسنده , , Zhengrong Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
11
From page :
320
To page :
330
Abstract :
Conformational change and aggregation of native proteins are associated with many serious age-related and neurological diseases. γS-Crystallin is a highly stable, abundant structural component of vertebrate eye lens. A single F9S mutation in the N-terminal domain of mouse γS-crystallin causes the severe Opj cataract, with disruption of cellular organization and appearance of fibrillar structures in the lens. Although the mutant protein has a near-native fold at room temperature, significant increases in hydrogen/deuterium exchange rates were observed by NMR for all the well-protected β-sheet core residues throughout the entire N-terminal domain of the mutant protein, resulting in up to a 3.5-kcal/mol reduction in the free energy of the folding/unfolding equilibrium. No difference was detected for the C-terminal domain. At a higher temperature, this effect further increases to allow for a much more uniform exchange rate among the N-terminal core residues and those of the least well-structured surface loops. This suggests a concerted unfolding intermediate of the N-terminal domain, while the C-terminal domain stays intact. Increasing concentrations of guanidinium chloride produced two transitions for the Opj mutant, with an unfolding intermediate at ∼ 1 M guanidinium chloride. The consequence of this partial unfolding, whether by elevated temperature or by denaturant, is the formation of thioflavin T staining aggregates, which demonstrated fibril-like morphology by atomic force microscopy. Seeding with the already unfolded protein enhanced the formation of fibrils. The Opj mutant protein provides a model for stress-related unfolding of an essentially normally folded protein and production of aggregates with some of the characteristics of amyloid fibrils.
Keywords :
H/D exchange , ?S-crystallin , cataract , amyloid , denaturation
Journal title :
Journal of Molecular Biology
Serial Year :
2010
Journal title :
Journal of Molecular Biology
Record number :
1251759
Link To Document :
بازگشت