Title of article :
Structural Analysis of Kinetic Folding Intermediates for a TIM Barrel Protein, Indole-3-glycerol Phosphate Synthase, by Hydrogen Exchange Mass Spectrometry and Gō Model Simulation
Author/Authors :
Zhenyu Gu، نويسنده , , Maithreyi K. Rao، نويسنده , , William R. Forsyth، نويسنده , , John M. Finke، نويسنده , , C. Robert Matthews، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
The structures of partially folded states appearing during the folding of a (βα)8 TIM barrel protein, the indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (sIGPS), was assessed by hydrogen exchange mass spectrometry (HX-MS) and Gō model simulations. HX-MS analysis of the peptic peptides derived from the pulse-labeled product of the sub-millisecond folding reaction from the urea-denatured state revealed strong protection in the (βα)4 region, modest protection in the neighboring (βα)1–3 and (βα)5β6 segments and no significant protection in the remaining N and C-terminal segments. These results demonstrate that this species is not a collapsed form of the unfolded state under native-favoring conditions nor is it the native state formed via fast-track folding. However, the striking contrast of these results with the strong protection observed in the (βα)2–5β6 region after 5 s of folding demonstrates that these species represent kinetically distinct folding intermediates that are not identical as previously thought. A re-examination of the kinetic folding mechanism by chevron analysis of fluorescence data confirmed distinct roles for these two species: the burst-phase intermediate is predicted to be a misfolded, off-pathway intermediate, while the subsequent 5 s intermediate corresponds to an on-pathway equilibrium intermediate. Comparison with the predictions using a Cα Gō model simulation of the kinetic folding reaction for sIGPS shows good agreement with the core of the structure offering protection against exchange in the on-pathway intermediate(s). Because the native-centric Gō model simulations do not explicitly include sequence-specific information, the simulation results support the hypothesis that the topology of TIM barrel proteins is a primary determinant of the folding free energy surface for the productive folding reaction. The early misfolding reaction must involve aspects of non-native structure not detected by the Gō model simulation.
Keywords :
Protein folding , Topology , stable intermediate , misfolded intermediate , kinetic folding mechanism
Journal title :
Journal of Molecular Biology
Journal title :
Journal of Molecular Biology