Author/Authors :
M. Drobizhev، نويسنده , , A. Rebane، نويسنده , , Z. Suo، نويسنده , , C.W. Spangler، نويسنده ,
Abstract :
We use wavelength tunable femtosecond pulses to measure intrinsic (simultaneous) two-photon absorption (2PA) and three-photon absorption (3PA) molecular cross section in two series of π-conjugated dendrimers built of identical 4,4′-bis(diphenylamino) stilbene (BDPAS) and 4,4′-bis(diphenylamino) distyrylbenzene (BDPADSB) repeat units. Record large 2PA cross sections, σ2=10−46 cm4 s are obtained for the largest second-generation BDPAS-based dendrimer, as well as zeroth-generation 4-arm BDPADSB-based dendrimer. In both series, maximum 2PA cross section increases nonlinearly with the number of π-electrons, whereas for higher generations this dependence turns to linear one. 3PA cross section also increases nonlinearly with the size of the system in the series of BDPAS-based molecules, amounting a record large value, σ3=10−79 cm6 s2, for the largest, second-generation dendrimer. We interpret these results in terms of direct inter-branch conjugation, which facilitates cooperative enhancement of the nonlinear-optical response. We propose a simple model which allows us to determine the effective size of coherent domains (extent of conjugation), which, in turn, determines the optimum dendrimer size for most efficient nonlinear response.