Title of article :
Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model
Author/Authors :
Martyn P. Clarka، نويسنده , , David E. Ruppa، نويسنده , , 1، نويسنده , , Ross A. Woodsa، نويسنده , , Xiaogu Zhenga، نويسنده , , Richard P. Ibbitta، نويسنده , , Andrew G. Slaterb، نويسنده , , Jochen Schmidta، نويسنده , , Michael J. Uddstroma، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
16
From page :
1309
To page :
1324
Abstract :
This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.
Keywords :
Assimilation , Ensemble , Streamflow
Journal title :
Advances in Water Resources
Serial Year :
2008
Journal title :
Advances in Water Resources
Record number :
1271748
Link To Document :
بازگشت